Synthesis of Arylglycine and Mandelic Acid Derivatives through Carboxylations of α -Amido and α -Acetoxy Stannanes with Carbon Dioxide

Tsuyoshi Mita,* Masumi Sugawara, Hiroyuki Hasegawa, and Yoshihiro Sato*

Faculty of Pharma[ce](#page-8-0)utical Sciences, Hokkaido University, Sapporo 060-0812, Japan

S Supporting Information

[AB](#page-8-0)STRACT: [Incorporation](#page-8-0) reactions of carbon dioxide (CO₂) with N-Boc- α -amido and α -acetoxy stannanes were developed using CsF as a mild tin activator. Monoprotected α amido stannanes could be used, and the corresponding arylglycine derivatives were obtained in moderate-to-high yields under 1 MPa (10 atm) of $CO₂$ pressure. α -Acetoxy stannanes also underwent carboxylation to afford mandelic acid derivatives in excellent yields under ambient $CO₂$ pressure. Both transformations enabled the synthesis of α tertiary and α -quaternary carboxylic acid derivatives. In addition, the chirality of (S) -N-tert-butylsulfonyl- α -amido stannanes was transferred with up to 90% inversion of configuration at 100 °C.

ENTRODUCTION

 α -Amino and α -hydroxy acid derivatives comprise an important class of molecules exhibiting various functions in both biochemistry and organic chemistry. In particular, the arylglycine class of nonproteogenic α -amino acids has recently received much attention because novel glycopeptide antibiotics such as vancomycin 1 contain arylglycine components in their structure. α -Hydroxy acid derivatives, e.g., mandelic acid, are used widely in cos[me](#page-8-0)tics for skin care and as useful building blocks in organic synthesis.² Therefore, the development of an efficient process for their syntheses is an important goal in organic chemistry. One su[ch](#page-8-0) synthetic strategy is carboxylation of an amine or alcohol derivative with $CO₂$ at the α -position of nitrogen and oxygen atoms; this route for generating α -amino and α -hydroxy acid derivatives would be more straightforward than existing methodologies¹⁻³ and, by using CO_2 , would take advantage of an ubiquitous, inexpensive, nontoxic, and renewable C1 source.

Although considerable progress in the development of $CO₂$ fixation techniques has been made,⁴ carboxylations of sp^3 carbon located at the α -position of heteroatoms have required the use of strongly basic organolithiu[m](#page-8-0) reagents (e.g., n- or sec-BuLi with or without a ligand), which undergo either (a) deprotonation⁵ or (b) Sn-Li exchange of α -stannanes^{6,7} to generate a lithium carbanion, followed by carboxylation to provide $α$ -am[in](#page-8-0)o and $α$ -hydroxy acid derivatives. The[refo](#page-8-0)re, these transformations require substrates without an acidic proton and must be operated under strictly anhydrous conditions in order to induce efficient carboxylation. In the context of amino acid synthesis, monoprotected α -amino acids, especially N-Boc derivatives, are more useful than bis-protected ones, because conventional peptide synthesis generally employs N-Boc- or N-Fmoc-amido acid derivatives due to the ease of protection and deprotection sequences (e.g., Merrifield peptide synthesis⁸). However, if *n*-BuLi is employed for monoprotected N-Boc-α-amido stannane 1a in Sn−Li exchange reactions, deproto[na](#page-8-0)tion of the acidic amide N−H initially occurs to generate an amido anion; this species does not undergo further Sn−Li exchange to generate a 1,2-dianion, presumably owing to either a high kinetic barrier or the intrinsic thermodynamic instability of the resulting 1,2-dianion (Scheme 1). Thus, we

Scheme 1. Unfavorable 1,2-Dianion Formation

considered the use of a milder base that would selectively activate tin atoms, and we have already reported that CsF is a suitable activator for 1a, promoting carboxylation with $CO₂$ to afford the corresponding arylglycine derivatives in high yields under 1 MPa (10 atm) of $\overline{CO_2}^{10}$ Taking advantage of the easy accessibility of monoprotected α -amido stannanes from imine equivalents,^{11,12} a novel one-[po](#page-9-0)t process for α -amino acid synthesis from imine precursors using TMS-SnBu₃ and CsF was develo[ped.](#page-9-0)¹⁰ In this article, we report the substituent effects

Received: Oct[ob](#page-9-0)er 20, 2011 Published: January 30, 2012

Yields were determined by ¹H NMR analysis using 1,1,2,2-tetrachloroethane as an internal standard. The values in parentheses represent isolated yield.

on the aromatic ring of α -aryl α -amido stannanes as well as expansion of the substrate scope that includes a ketoiminederived α -amido stannane and α -acetoxy stannanes. Results of chirality transfer transformations using chiral α -amido stannanes are also presented.

■ RESULTS AND DISCUSSION

Carboxylation of N-Boc- α -Amido Stannanes. First, various para-substituted α-aryl α-amido stannanes bearing both electron-donating and -withdrawing groups were synthesized using methods described in our recent report;¹¹ these were then applied to carboxylation under 1 MPa (10 atm) of CO₂ pressure at 100 $^{\circ}$ C in the presence of 3 equiv of [CsF](#page-9-0). This process yielded a mixture of the desired carboxylate, 2, the yield of which was determined after esterification with TMSCHN₂, and protiodestannylation product 3 (Table 1). All of the substrates except 1b underwent carboxylation; however, the yield of 2 depended on the electronic character of the substituent of the aromatic ring. Interestingly, Hammett σ values¹³ are useful in the prediction of each yield. When using electron-deficient substrates with positive σ -values such as those beari[ng](#page-9-0) trifluoromethyl, methoxy carbonyl, chloro, and fluoro substituents on their aromatic ring (1b−1e), the yield of 3 increased in response to Hammett σ -values, presumably because proton transfer from the amide N−H moiety was allowed to proceed.¹⁰ In contrast, the reaction of electron-rich substrates with negative σ -values such as those having methoxy and methyl groups ([1f](#page-9-0) and 1g) reduced the yield of 2 owing to incomplete reaction of α -amido stannane 1. In addition, ^{119}Sn NMR analysis of α -amido stannanes 1 in C₆D₆ correlated perfectly with Hammett σ -values (the chemical shift of tin atoms are moved to upfield in response to the increased electron density of aromatic rings) and are thus consistent with the trend outlined above. In addition, the NMR spectra of 1e having a p-fluoro-phenyl group revealed nuclear coupling between ^{119}Sn and ^{19}F (J_{Sn-F} = 21.9 Hz). Based on the correlation between Hammett σ -values and the yield of each component, substrates with σ -values close to zero such as 1a and 1e provide the highest yields of carboxylation products. Carboxylations using these two α -amido stannanes prevented the generation of 3 at a maximum level without unreacted 1 remaining.

min: <40% conversion) was used to approximate k_x/k_H (X = Cl, F, Me, OMe). Plotting $log(k_x/k_H)$ $log(k_x/k_H)$ versus Hammett σ -values indeed revealed a linear relationship with $\rho = +1.83$ (Figure 1), 0.6 0.4 $v = 1.8281x + 0.0295$ $R^2 = 0.9548$

In order to obtain quantitative data on the reaction rates, the ratio of conversion $(2 + 3/2a + 3a)^{14}$ at an early time point (15)

Figure 1. Hammett relationship between σ -values and $\log(k_x/k_H)$.

indicating that anion formation $10,15$ is the rate-determining step and the negative charge at the benzylic position is stabilized by π -electrons of the aryl group i[n the](#page-9-0) transition state (Figure 1).

Further studies of various α -amido stannanes with considerable electron density within the aromatic ring revealed that sterically demanding ortho-substituted α -aryl α -amido stannanes (1h and 1i) and α - and β-naphthyl amido stannanes (1j and 1k) were tolerated in this carboxylation yielding 2 together with trace amounts of protiodestannylation product 3 (<1%) (Table 2). In addition to heteroaromatic substrates (1l− 1n), cyclic substrates (1o−1p) were also active in this process. Finally, consi[de](#page-2-0)ring the synthetic advantage of using this fluoride-mediated carboxylation, we attempted to prepare α quaternary arylglycines. Under identical conditions (100 °C, 3 h), racemic α -amido stannane 1q derived from N-sulfonyl ketoimine¹⁶ was carboxylated to give α -disubstituted glycine derivative 2q in moderate yield. There was a small difference between ¹[H](#page-9-0) NMR and isolated yields for all compounds, indicating that some material loss occurred during the purification process by 10% $K_2CO_3/silica$ gel column

Table 2. Further Substrate Scope

"Yields were determined by H NMR analysis using 1,1,2,2tetrachloroethane as an internal standard. The values in parentheses represent isolated yield. $\frac{b}{c}$ The reaction was performed at 120 °C. c 15% of 3m was observed. ^d17% of 3q and 24% of acetophenone were observed.

chromatography¹⁷ followed by preparative TLC in order to remove organotin residues and 3.

Carboxylati[on](#page-9-0) of α -Acetoxy Stannanes. Next, we turned our attention to examine carboxylations of α -alkoxy stannanes 6 with $CO₂$. To our knowledge, there have been no reports on a general carboxylation of α -alkoxy stannanes with $CO₂$ promoted by a fluoride ion. First, several $α$ -hydroxy stannanes having different protecting groups (PGs) were prepared from benzaldehyde 6l,m,18 and subjected to carboxylation (Table 3). Among potential candidates such as acetyl, ethyl carbonyl, MOM, and [TM](#page-8-0)[S,](#page-9-0) the use of acetyl protection was most effective, giving high conversion even at 60 °C within 3 h. Protection other than that with the TMS group is necessary; under the conditions examined, retro-stannylation occurs, affording benzaldehyde starting material exclusively. On the other hand, the α -oxygenated stannanes have no acidic protons, and the proton transfer reaction, which produces a protiodestannylation product, cannot proceed. Higher pressure was therefore not required to achieve the desired carboxylation, 10 giving 7 even under ambient CO_2 pressure using a gas balloon (1 atm).

Havi[ng](#page-9-0) decided on an optimal protecting group, various α acetoxy stannanes 6 were prepared and tested in the fluoridemediated carboxylation process (Table 4). High yields were achieved for all substrates with the exception of 2-furyl α acetoxy stannane 6j. Product yields were [n](#page-3-0)ot influenced by the electronic character of substituents on the aromatic ring because carboxylation is only allowed to proceed in the absence of a proton source, a trend which is different from that of the carboxylation of N-Boc- α -amido stannanes 1. As for electronically more deficient substrates (entries 1−4), a lower temperature (60 °C) was sufficient to achieve complete conversion. In addition to α -aryl substrates (entries 1–11), α alkenyl and cyclic substrates were also active in this process (entries 12 and 13). It is notable that acetophenone-derived α disubstituted α -alkoxy stannane also underwent smooth carboxylation (entry 14).

In order to demonstrate the synthetic utility of this process, we developed a one-pot protocol for the synthesis of acetyl mandelic acid 7aa′ from benzaldehyde that does not require the isolation of α -acetoxy stannane intermediate 6aa (Scheme 2). The stannylation in the first step could be mediated by the combination of CsF and TMS-SnBu₃ in CH₃CN.¹¹ After [3 h](#page-3-0), simple solvent exchange was carried out by means of evaporation of $CH₃CN$ and other volatile mater[ial](#page-9-0)s followed by introduction of DMF. Additional CsF was then added under $CO₂$ gas to promote the following carboxylation at 100 °C, affording the desired carboxylic acid, which was converted into its stable t -BuNH₂ salt. After the fine solids had been washed using hexane to completely remove organotin residues, carboxylic acid 7aa′ was obtained in 52% yield by treatment with acid.

Chirality Transfer System. For the purpose of preparing chiral α -amino or α -hydroxy acids using this carboxylation, we then evaluated the extent of chirality transfer when starting from optically active substrates. According to the reported asymmetric syntheses, several potential chiral substrates were prepared. Unfortunately, carboxylations of (S) -1a^{12c} (47% ee), (S) -N-Boc-N- $(p$ -methoxyphenyl)- α -(tributylstannyl)benzylamine $(1r^{\text{3}6})$ (84[% ee](#page-9-0)), and (S)-6aa^{12c} (95% ee) in DMF gave only racemic products (Scheme 3).

By contrast, [th](#page-8-0)e use of (S) -N-tert-[buty](#page-9-0)lsulfonyl- α -amido stannane 8a (>99% ee), which was p[re](#page-3-0)pared according to the procedure reported by Chong,^{12b} afforded product with an ee of 47% in DMF (Table 5).¹⁹ After the screening of several solvents such as DMSO, tolu[ene,](#page-9-0) 1,4-dioxane, DME, diglyme, and triglyme (triethylene [gl](#page-4-0)[yco](#page-9-0)l dimethyl ether), triglyme was found to be superior, affording the corresponding α -amino acid

"Yields were determined by ¹H NMR analysis using 1,1,2,2-tetrachloroethane as an internal standard.

Table 4. Carboxylation of α -Acetoxy Stannanes

 a Yields were determined by 1 H NMR analysis using 1,1,2,2-tetrachloroethane as an internal standard. The values in parentheses represent isolated yield.

Scheme 2. One-Pot Synthesis of Acetyl Mandelic Acid 7aa′ from Benzaldehyde and $CO₂$

Scheme 3. Various Potential Substrates for Chirality Transfer Reactions

in 85% ee with inversion of the stereogenic center (entries 1− 7).5b,12b Although the reaction caused erosion of the enantioselectivity to some degree, it is notable that chirality co[ul](#page-8-0)[d](#page-9-0) [b](#page-9-0)e maintained at 100 °C, indicating that the carboxylation of N-sulfonyl- α -amido stannane does not proceed via a carbanion intermediate. When TBAT (tetrabutylammonium triphenyldifluorosilicate) was used as a fluoride source instead of CsF, chirality was maintained in 66% ee, albeit with decreased yield (entry 8). Other substitutions on the aromatic ring were screened, and it was revealed that an electrondeficient substituent such as fluoride or chloride slightly enhanced the racemization and protiodestannylation (entries 9 and 10). On the other hand, chirality was maintained in 90% ee when using α -tolyl amido stannane 8d (entry 11). Although the mechanism for inversion of stereochemistry is not clear at this stage, we propose that carboxylation proceeds through a hypercoordinated fluorostannate and that a transition state such as structure 11 might be involved in the invertive carboxylation, where $CO₂$ undergoes back-side attack by fluorostannate (Figure 2). Electron-deficient substituents such as fluoride and chloride might result in the generation of small quantities of the [dis](#page-4-0)sociated benzylic anion, leading to a decrease in enantioselectivity and an increase in protiodestannylation. On the other hand, electron-donating tolyl substitution might suppress the formation of the benzylic anion, instead maintaining the coordinated stannane, leading to the higher level of chirality transfer. As discussed in Table 1, ¹¹⁹Sn NMR spectroscopy of 8 in C_6D_6 also supported the order of electron density of substrates. These results would open [a](#page-1-0) new window for the enantioselective synthesis of arylglycines from $CO₂$ and imines.

■ CONCLUSION

We have developed novel carboxylation reactions of monoprotected N-Boc-α-amido stannanes and α-acetoxy stannanes using $CO₂$ as a C1 source. Both transformations enabled the synthesis of α -tertiary and α -quaternary carboxylic acid derivatives. In addition, chiral N-sulfonyl substrates underwent carboxylation with inversion of the stereogenic center providing

Table 5. Chirality Transfer Reactions

 a Yields were determined by 1H NMR analysis using 1,1,2,2-tetrachloroethane as an internal standard. The values in parentheses represent the yield of protioners and product 10. Be's were determined by chiral HPLC analysis. 39% of 8a remained. The reaction was performed at 80 °C.

eTRAT (tetrahutylammonium triphenyldifluorosilicate) was used instead of CsE TBAT (tetrabutylammonium triphenyldifluorosilicate) was used instead of CsF.

Figure 2. Proposed transition state in carboxylation of 8 for invertive chirality transfer.

products with up to 90% ee. Examination of catalytic enantioselective synthesis of arylglycine derivatives from $CO₂$ as well as α -amino metal reagents other than stannanes are both currently underway.

EXPERIMENTAL SECTION

General. NMR spectra were recorded on a 500 MHz (¹H), 125 MHz (^{13}C) , or 160 MHz (^{119}Sn) spectrometer. Chemical shifts in $\rm CDCl_{3}$ were reported in the scale relative to $\rm CHCl_{3}$ (7.26 ppm) for $\rm ^1H$ NMR and to CDCl₃ (77.0 ppm) for ¹³C NMR as internal references.
¹¹⁹Sn NMR was measured in C_6D_6 using SnMe₄ (0 ppm) as an internal reference. Column chromatography was performed with neutral silica gel (40–50 μ m). In general, all manipulations were performed under an argon atmosphere unless otherwise stated. Dry solvents were purified under argon using a solvent purification system (THF, $Et₂O$, toluene, DMF, and MeCN). Triglyme was distilled from CaH. Caution! $TMSCHN₂$ is potentially explosive, especially when $CH₂N₂$ is generated after a long time in storage.

Synthesis of α -Amido Stannanes. N-Boc- α -amido stannanes (1a−1n) were prepared according to reported methods.¹¹ N-Boc-αamido stannanes (1o−1p) were prepared according to a reported m[e](#page-9-0)thod.^{5b} rac-N-(tert-Butylsulfonyl)- α -amido stannane (1q) was prepared according to the modified procedure of a reported one^{12b} (reactio[n o](#page-8-0)f LiSnBu₃ with N-tert-butylsulfoyl ketoimine¹⁶ at -78 °C). Chiral 1r was prepared following the reported method.^{5b} N-Boc-[α](#page-9-0)amido stannanes (1a, 1c, 1d, 1g, 1h, 1j, 1k, 1l, and [1n](#page-9-0)) are known compounds.¹¹

N-(tert-Butoxycarbonyl)-α-(tributylstannyl)-4-t[rifl](#page-8-0)uoromethylbenzyl[am](#page-9-0)ine (1b). Colorless oil; IR (neat): 3416, 2957, 2872,

1699, 1503, 1417, 1367, 1265, 1165, 1067 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 7.48 (d, J = 8.3 Hz, 2H), 7.10 (d, J = 8.3 Hz, 2H), 5.18 $(d, J = 5.0$ Hz, 1H), 4.24 $(d, J = 5.0$ Hz, 1H), 1.47 $(s, 9H)$, 1.39–1.33 (m, 6H), 1.26−1.19 (m, 6H), 0.87−0.80 (m, 15H) ppm; 13C NMR $(125 \text{ MHz}, \text{CDCl}_3): \delta = 157.2, 150.4, 126.6 \text{ (q, } J_{\text{CF}} = 32.2 \text{ Hz}), 125.5,$ 124.6 (q, J_{CF} = 270.3 Hz), 124.1, 79.8, 45.7, 29.0, 28.5, 27.5, 13.8, 11.3 ppm. HRMS (ESI): m/z calcd for C₂₁H₃₃F₃O₂NSn [M-Bu]⁺: 508.1480. Found: 508.1476.

N-(tert-Butoxycarbonyl)-α-(tributylstannyl)-4-fluorobenzylamine (1e). Colorless oil; IR (neat): 3415, 2956, 2871, 1700, 1603, 1506, 1416, 1334, 1229, 1150 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 6.99−6.92 (m, 4H), 5.14 (d, J = 5.0 Hz, 1H), 4.14 (d, J = 5.0 Hz, 1H), 1.46 (s, 9H), 1.42−1.35 (m, 6H), 1.28−1.20 (m, 6H), 0.87−0.77 (m, 15H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ = 160.3 (d, J_{CF} = 239.6 Hz), 156.9, 141.4 (d, J_{CF} = 3.6 Hz), 125.5 (d, J_{CF} = 8.4 Hz), 115.1 (d, J_{CF} = 20.3 Hz), 79.4, 44.8, 28.9, 28.4, 27.4, 13.7, 10.9 ppm. HRMS (ESI): m/z calcd for $C_{20}H_{33}FO_2NSn$ [M – Bu]⁺: 458.1512. Found: 458.1507.

N-(tert-Butoxycarbonyl)-α-(tributylstannyl)-4-methylbenzylamine (1f). Colorless oil; IR (neat): 3379, 2955, 2871, 1670, 1611, 1509, 1417, 1336, 1248, 1169 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 7.04 (d, $J = 8.3$ Hz, 2H), 6.91 (d, $J = 8.3$ Hz, 2H), 5.12 (d, $J = 5.0$ Hz, 1H), 4.16 (d, J = 5.0 Hz, 1H), 2.29 (s, 3H), 1.45 (s, 9H), 1.41−1.30 (m, 6H), 1.27−1.19 (m. 6H), 0.86−0.72 (m, 15H) ppm; 13C NMR $(125 \text{ MHz}, \text{CDCl}_3): \delta = 156.8, 142.4, 133.8, 129.0, 124.3, 79.1, 45.4,$ 28.9, 28.4, 27.4, 20.9, 13.7, 10.9 ppm. HRMS (ESI): m/z calcd for $C_{21}H_{36}O_2$ NSn [M – Bu]⁺: 454.1763. Found: 454.1759.

N-(tert-Butoxycarbonyl)-α-(tributylstannyl)-2-fluorobenzylamine (1i). Colorless oil; IR (neat): 3416, 2956, 2853, 1699, 1505, 1418, 1366, 1226, 1141, 1036 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 7.13−7.09 (m, 1H), 7.06−7.01 (m, 2H), 6.97−6.93 (m, 1H), 5.10 (d, J = 6.3 Hz, 1H), 4.54 (d, J = 6.3 Hz, 1H), 1.45 (s, 9H), 1.42−1.34 (m, 6H), 1.30−1.20 (m, 6H), 0.88−0.77 (m, 15H) ppm; 13C NMR (125 MHz, CDCl₃): δ = 158.7 (d, J_{CF} = 240.9 Hz), 156.4, 132.5 (d, J_{CF} = 13.1 Hz), 126.3 (d, J_{CF} = 4.8 Hz), 125.8 (d, J_{CF} = 7.1 Hz), 124.2 (d, J_{CF} $= 3.6$ Hz), 115.0 (d, $J_{CF} = 21.5$ Hz), 79.3, 39.2, 28.8, 28.4, 27.4, 13.7, 10.6 ppm. HRMS (ESI): m/z calcd for C₂₀H₃₃FO₂NSn [M – Bu]⁺: 458.1512. Found: 458.1509.

N-tert-Butyl (Benzofuran-2-yl(tributylstannyl)methyl) carbamate (1m). Colorless oil; IR (neat): 3392, 2956, 2871, 1702, 1499, 1418, 1366, 1251, 1167, 1075 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 7.42 (t, J = 4.5 Hz, 1H), 7.33 (t, J = 4.5 Hz, 1H), 7.15−

7.13 (m, 2H), 6.23 (s, 1H), 5.10 (d, $J = 6.0$ Hz, 1H), 4.50 (d, $J = 6.0$ Hz, 1H), 1.47 (s, 9H), 1.45−1.42 (m, 6H), 1.28−1.21 (m, 6H), 0.94− 0.82 (m, 15H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ = 161.5, 156.0, 154.4, 129.3, 122.5, 122.4, 119.8, 110.4, 98.2, 79.6, 39.2, 28.8, 28.4, 27.4, 13.6, 11.1 ppm; HRMS (ESI): m/z calcd for $C_{26}H_{44}O_3NSn$ [M + H]+ : 538.2343. Found: 538.2331.

N-tert-Butyl 1-(Tributylstannyl)-3,4-dihydroisoquinoline-2(1H)-carboxylate (1o). Colorless oil; IR (neat): 2956, 2871, 1690, 1603, 1456, 1364, 1294, 1234, 1173, 1039 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 7.09–6.86 (m, 3H), 6.85 (6.81 for rotamer) (d, J = 7.5 Hz, 1H), 5.32 (5.27) (s, 1H), 4.29−4.26 (3.85−3.30) (m, 1H), 3.35−3.30 (2.93−2.89) (m, 1H), 3.01−2.94 (2.73−2.66) (m, 2H), 1.50 (1.48) (s, 9H), 1.40−1.34 (m, 6H), 1.28−1.19 (m, 6H), 0.86− 0.76 (m, 15H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ = 153.7 (153.4), 139.9 (139.5), 131.5 (131.4), 128.9 (128.1), 126.3 (126.2), 123.94 (123.87), 123.7 (123.6), 79.8 (79.1), 49.8 (49.5), 41.9. 40.8, 28.90 (28.85), 28.6 (28.5), 27.44 (27.38), 13.59 (13.57), 10.5 (10.3) ppm. HRMS (ESI): m/z calcd for $C_{22}H_{36}O_2NSn$ [M – Bu]⁺: 466.1768. Found: 466.1766.

N-tert-Butyl 1-(Tributylstannyl)isoindoline-2-carboxylate (1p). Colorless oil; IR (neat): 2956, 2853, 1688, 1463, 1365, 1257, 1220, 1119, 1023, 879 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 7.20– 7.06 (m, 3H), 7.00 (6.95 for rotamer) (d, J = 7.3 Hz, 1H), 5.10 (5.02) $(s, 1H)$, 4.97 (4.81) (d, J = 14.9 Hz, 1H), 4.54 (4.47) (d, J = 14.9 Hz, 1H), 1.52 (1.50) (s, 9H), 1.43−1.36 (m, 6H), 1.28−1.20 (m, 6H), 0.90–0.83 (m, 15H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ = 153.5 (153.2), 143.4 (143.1), 134.9 (134.4), 127.1 (127.0), 124.9 (124.8), 122.5 (122.3), 120.9 (120.1), 79.8 (79.0), 55.2 (55.1), 52.4 (52.1), 28.90 (28.86), 28.63 (28.56), 27.44 (27.38), 13.7 (13.6), 10.3 (10.1) ppm. HRMS (ESI): m/z calcd for C₂₁H₃₄O₂NSn [M – Bu]⁺: 452.1606. Found: 452.1602.

N-(1-Tributylstannyl-1-methylbenzyl)-tert-butanesulfonamide (1q). Pale yellow oil; IR (neat): 3267, 2955, 1597, 1493, 1375, 1293, 1129, 1080, 1023, 939 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 7.31 (d, J = 4.0 Hz, 4H), 7.13−7.11 (m, 1H), 3.99 (s, 1H), 1.92 (s, 3H), 1.44 (s, 9H), 1.38−1.19 (m, 12H), 0.90−0.77 (m, 15H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ = 148.5, 128.4, 125.0, 124.4, 59.7, 55.2, 28.8, 27.5, 26.2, 24.5, 13.6, 11.2 ppm. HRMS (ESI): m/z calcd for $C_{24}H_{45}O_2NSSnNa [M + Na]^+$: 554.2091. Found: 554.2079.

Synthesis of α -Acetoxy Stannanes. α -Acetoxy stannanes (6aa and 6b−6l) were prepared according to a reported method.^{6l} Acetoxy stannane 6m was prepared according to a reported method.²⁰ α -Acetoxy stannane 6n was prepared by the reaction of LiSnBu_{[3](#page-8-0)} and acetophenone at -78 °C. $6aa$, $12c$ $6b$, $12c$ $6e$, $12c$ and $6j$ ²¹ are kno[wn](#page-9-0) compounds.

4-Chlorophenyl(tributylst[ann](#page-9-0)yl)[me](#page-9-0)thy[l A](#page-9-0)cetat[e \(](#page-9-0)6c). Colorless oil; IR (neat): 2956, 2926, 2871, 2853, 1726, 1594, 1489, 1370, 1246, 1091 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 7.25 (d, J = 7.3 Hz, 2H), 7.04 (d, J = 7.3 Hz, 2H), 5.87 (s, 1H), 2.14 (s, 3H), 1.43− 1.37 (m, 6H), 1.28−1.21 (m, 6H), 0.88−0.82 (m, 15H) ppm; 13C NMR (125 MHz, CDCl₃): δ = 170.8, 139.6, 134.6, 129.0, 123.9, 73,4, 28.8, 27.3, 21.0, 13.6, 9.9 ppm. HRMS (EI): m/z calcd for $C_{17}H_{26}ClO_2Sn$ [M – Bu⁺]: 417.0643 Found: 417.0632.

4-Fluorophenyl(tributylstannyl)methyl Acetate (6d). Colorless oil; IR (neat): 2956, 2926, 2871, 2853, 1725, 1604, 1508, 1418, 1370, 1227 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.09–6.96 (m, 4H), 5.86 (s, 1H), 2.13 (s, 3H), 1.43−1.35 (m, 6H), 1.28−1.19 (m, 6H), 0.89–0.80 (m, 15H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ = 170.8, 160.6 (d, J_{CF} = 242.0 Hz), 138.6 (d, J_{CF} = 3.6 Hz), 125.3 (d, J_{CF} $= 7.3$ Hz), 115.2 (d, $J_{CF} = 21.4$ Hz), 72.7, 28.8, 27.3, 21.0, 13.6, 9.9 ppm. HRMS (EI): m/z calcd for $C_{17}H_{26}FO_2Sn$ [M – Bu⁺]: 401.0939. Found: 401.0939.

4-Tolyl(tributylstannyl)methyl Acetate (6f). Colorless oil; IR (neat): 2956, 2925, 2871, 2853, 1723, 1512, 1463, 1369, 1339, 1250 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 7.08 (d, J = 8.0 Hz, 2H), 7.00 $(d, J = 8.0 \text{ Hz}, 2H)$, 5.86 (s, 1H), 2.30 (s, 3H), 2.12 (s, 3H), 1.42–1.36 (m, 6H), 1.27−1.20 (m, 6H), 0.86−0.80 (m, 15H) ppm; 13C NMR $(125 \text{ MHz}, \text{CDCl}_3): \delta = 170.8, 139.6, 134.6, 129.0, 123.9, 73.4, 28.8,$ 27.3, 21.0, 13.6, 9.9 ppm. HRMS (EI): m/z calcd for $C_{18}H_{29}O_2Sn$ [M − Bu⁺]: 397.1190. Found: 397.1186.

2-Methoxyphenyl(tributylstannyl)methyl Acetate (6g). Colorless oil; IR (neat): 2955, 2928, 2870, 2853, 1726, 1599, 1585, 1490, 1370, 1332 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 7.27 (d, J = 7.1 Hz, 1H), 7.10 (t, J = 7.5 Hz, 1H), 6.95 (t, J = 7.1 Hz, 1H), 6.79 (d, J = 7.5 Hz, 1H), 6.06 (s, 1H), 3.80 (s, 3H), 2.17 (s, 3H), 1.47−1.31 (m, 6H), 1.29−1.21 (m, 6H), 0.87−0.72 (m, 15H) ppm; 13C NMR (125 MHz, CDCl₃): δ = 170.5, 153.0, 131.0, 125.4, 125.3, 120.6, 109.0, 69.4, 54.7, 28.7, 27.3, 20.9, 13.6, 10.1 ppm. HRMS (EI): m/z calcd for $C_{18}H_{29}O_3Sn$ [M – Bu⁺]: 413.1139. Found: 413.1126.

1-Naphthyl(tributylstannyl)methyl Acetate (6h). Colorless oil; IR (neat): 3058, 2955, 2926, 2871, 2852, 1721, 1593, 1509, 1463, 1397 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 7.86–7.84 (m, 2H), 7.66−7.62 (m, 1H), 7.49−7.43 (m, 4H), 7.00 (s, 1H), 2.14 (s, 3H), $13C$ NMR (125 MHz, CDCl₃): $\delta = 170.7, 138.3, 133.6, 129.0, 128.5,$ 125.6, 125.58, 125.55, 125.50, 122.8, 120.6, 71.9, 28.6, 27.3, 21.1, 13.5, 10.6 ppm. HRMS (EI): m/z calcd for C₂₁H₂₉O₂Sn [M – Bu⁺]: 433.1190. Found: 433.1180.

2-Naphthyl(tributylstannyl)methyl Acetate (6i). Colorless oil; IR (neat): 3056, 2955, 2926, 2871, 2852, 1725, 1631, 1600, 1507, 1463 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.77 (t, J = 7.2 Hz, 3H), 7.53 (s, 1H), 7.46−7.36 (m, 2H), 7.24−7.21 (m, 1H), 6.08 (s, 1H), 2.19 (s, 3H), 1.45−1.31 (m, 6H), 1.26−1.19 (m, 6H), 0.92−0.75 (m, 15H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ = 170.9, 140.4, 133.7, 131.6, 128.1, 127.7, 127.4, 126.1, 124.9, 123.1, 120.9, 73.6, 28.8, 27.3, 21.1, 13.6, 10.1 ppm. HRMS (EI): m/z calcd for C₂₁H₂₉O₂Sn [M – Bu⁺]: 433.1190. Found: 433.1183.

2-Thienyl(tributylstannyl)methyl Acetate (6k). Pale yellow oil; IR (neat): 2956, 2925, 2871, 2853, 1725, 1464, 1371, 1295, 1245, 1074 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 7.12 (d, J = 4.6 Hz, 1H), 6.91 (dd, J = 3.4, 4.6 Hz, 1H), 6.74 (d, J = 3.4 Hz, 1H), 6.07 (s, 1H), 2.10 (s, 3H), 1.47−1.41 (m, 6H), 1.30−1.23 (m, 6H), 0.92−0.85 (m, 15H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ = 170.7, 146.1, 126.7, 123.1, 122.0, 68.5, 28.8, 27.3, 20.9, 13.6, 10.3 ppm. HRMS (EI): m/z calcd for C₁₅H₂₅O₂SSn [M – Bu⁺]: 389.0597. Found: 389.0585.

(E)-1-(Tributylstannyl)-2-methyl-3-phenylallyl Acetate (6l). Colorless oil; IR (neat): 2956, 2926, 2871, 2853, 1724, 1643, 1598, 1492, 1463, 1370 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 7.32 (dd, J $= 5.3, 7.3$ Hz, 2H), 7.25 (d, J = 5.3 Hz, 2H), 7.18 (t, J = 7.3 Hz, 1H), 6.30 (s, 1H), 5.42 (s, 1H), 2.14 (s, 3H), 1.86 (s, 3H), 1.58−1.50 (m, 6H), 1.36−1.27 (m, 6H), 1.04−0.86 (m, 15H) ppm; 13C NMR (125 MHz, CDCl₃): δ = 170.5, 138.1, 128.81, 128.78, 128.0, 125.7, 119.5, 76.3, 28.9, 27.4, 21.0, 16.1, 13.7, 10.3 ppm. HRMS (EI): m/z calcd for $C_{20}H_{31}O_2Sn$ [M – Bu⁺]: 423.1346. Found: 423.1348.

Tributyl(3,4-dihydro-1H-isochromen-1-yl)stannane (6m). Colorless oil; IR (neat): 2955, 2851, 1601, 1488, 1457, 1418, 1376, 1339, 1291, 1270 cm⁻¹; ¹H NMR (500 MHz, C₆D₆): δ = 7.05–7.03 $(m, 1H)$, 6.93–6.92 $(m, 2H)$, 6.84 $(d, J = 8.0 \text{ Hz}, 1H)$, 5.52 $(s, 1H)$, 3.84−3.80 (m, 1H), 3.61−3.57 (m, 1H), 2.73−2.67 (m, 1H), 2.56− 2.51 (m, 1H), 1.59−1.53 (m, 6H), 1.37−1.53 (m, 6H), 1.04−0.89 (m, 15H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ = 141.2, 130.8, 129.0, 125.9, 123.7, 122.1, 75.1, 65.4, 29.2, 29.0, 27.3, 13.6, 10.0 ppm. HRMS (EI): m/z calcd for $C_{17}H_{27}OSn$ [M – Bu⁺]: 367.1084. Found: 367.1077.

1-Phenyl-1-(tributylstannyl)ethyl Acetate (6n). Colorless oil; IR (neat): 2955, 2871, 1717, 1493, 1369, 1266, 1230, 1070, 1033, 953 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 7.31–7.28 (m, 2H), 7.14– 7.11 (m, 3H), 2.16 (s, 3H), 1.83 (s, 3H), 1.39−1.19 (m, 12H), 0.92− 0.69 (m, 15H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ = 171.9, 147.1, 128.2, 125.1, 123.4, 81.7, 28.8, 27.5, 24.7, 21.5, 13.6, 11.6 ppm. HRMS (EI): m/z calcd for C₁₈H₂₉O₂Sn [M – Bu]⁺: 397.1190. Found: 397.1193.

Synthesis of Optically Active 8. (S) -N-(tert-Butylsulfonyl)- α -(tributylstannyl)benzylamines (8a, 8b, 8c, and 8d) were prepared according to a previously reported method.^{12b} α -Amido stannanes (8a, 8c, and 8d) are known compounds.^{12b}

(S)-N-(tert-Butylsulfonyl)-α-(tributyl[sta](#page-9-0)nnyl)-4-fluorobenzylamine (8b). Colorless oil; IR (nea[t\): 3](#page-9-0)280, 2956, 2926, 2871, 2853, 1603, 1507, 1458, 1303, 1125 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 7.03−6.95 (m, 4 H), 4.53 (d, J = 9.0 Hz, 1 H), 4.43 (d, J = 9.0 Hz, 1

H), 1.45−1.31 (m, 6 H), 1.29−1.22 (m, 15 H), 0.95−0.82 (m, 15 H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ = 160.4 (J_{CF} = 242.0 Hz), 141.2 (J_{CF} = 3.5 Hz), 125.4 (J_{CF} = 7.1 Hz), 115.4 (J_{CF} = 21.5 Hz), 59.7, 47.1, 28.8, 27.3, 24.2, 13.6, 9.6 ppm. HRMS (ESI): m/z calcd for $C_{19}H_{33}FNO_2SSn$ [M – Bu⁺]: 478.1233. Found: 478.1230. [α]²⁴_D +45.6 ($c = 0.98$, CHCl₃, >99% ee).

General Procedure for Carboxylations of N-Boc-α-Amido Stannanes. Dry CsF (22.8 mg, 0.15 mol, 3 equiv), which was preheated for 10 min by a heat gun under vacuum before use (<5 mmHg at ca. 400 °C), was quickly mixed with N-Boc- α -amido stannane 1a (26.2 mg, 0.053 mmol). After addition of dry DMF (1.5 mL), the mixture was put inside an autoclave and sealed tightly. $CO₂$ gas was introduced into the autoclave (1 MPa), which was heated at 100 °C for 3 h. After the mixture cooled to 0 °C, water and Et_2O were added, and the pH of the mixture was adjusted to 2 by 1 M HCl. The organic layer was extracted with $Et₂O$, washed with brine, and dried over $Na₂SO₄$. The solvent was removed under reduced pressure, and the residue was diluted with MeOH (ca. 2 mL) followed by treatment with TMSCHN₂ (2 M in Et₂O). After 1 h, AcOH was added until N₂ bubbling ceased, and the mixture was directly concentrated under high vacuum to afford the crude product. Yields of 2a and 3a were determined at this stage using 1,1,2,2-tetrachloroethane (δ = 5.9 ppm in CDCl₃, 2H) as an internal standard (2a: 95%, 3a: <1%). The crude product was then purified by 10% K₂CO₃-SiO₂ column chromatography¹⁷ (hexane−AcOEt, 1:1) to remove organotin residues, followed by preparative PTLC (hexane−AcOEt, 7:1) for separation from 3a, affor[din](#page-9-0)g methyl 2-(tert-butoxycarbonylamino)-2-phenylacetate (2a) (11.7 mg, 0.044 mmol) in 83% yield as a colorless amorphous solid.

α-Amino acid derivatives (2a, 2d, 2e, 2f, 2i, 2j, 2k, 2l, 2n, and 2r) are known compounds.¹⁰

Methyl 2-(N-tert-Butoxycarbonylamino)-2-(4 methoxycarbonylph[en](#page-9-0)yl)acetate (2c). Colorless oil; IR (neat): 3366, 2979, 2954, 1722, 1613, 1578, 1417, 1367, 1282, 1166 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 8.02 (d, J = 8.3 Hz, 2H), 7.44 (d, J = 8.3 Hz, 2H), 5.67 (d, J = 6.6 Hz, 1H), 5.38 (d, J = 6.6 Hz, 1H), 3.91 (s, 3H), 3.72 (s, 3H), 1.43 (s, 9H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ = 170.9, 166.6, 154.7, 141.9, 130.2, 130.1, 127.1, 80.4, 57.3, 53.0, 52.2, 28.3 ppm. HRMS (ESI): m/z calcd for $C_{16}H_{21}O_6NNa$ $[M + Na]$ ⁺: 346.1261. Found: 346.1256.

Methyl 2-(N-tert-Butoxycarbonylamino)-2-(2 methoxylphenyl)acetate (2h). White solid; mp 79–81 °C; IR (neat): 3448, 2977, 1749, 1603, 1465, 1367, 1252, 1166, 1053, 913 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 7.32–7.29 (m, 2H), 6.95 (t, J $= 7.4$ Hz, 1H), 6.88 (d, J = 8.0 Hz, 1H), 5.65 (d, J = 8.9 Hz, 1H), 5.47 $(d, J = 8.9 \text{ Hz}, 1H)$, 3.82 (s, 3H), 3.68 (s, 3H), 1.44 (s, 9H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ = 172.0, 156.9, 155.3, 130.3, 129.7, 125.8, 120.9, 111.0, 79.9, 55.5, 54.6, 52.5, 28.3 ppm. HRMS (ESI): m/z calcd for $C_{15}H_{21}O_5NNa [M + Na]$ ⁺: 318.1307. Found: 318.1312.

Methyl 2-(N-tert-Butoxycarbonylamino)-2-(benzofuran-2 yl)acetate (2m). Pale yellow solid; mp 74−76 °C; IR (neat): 3429, 3057, 2979, 1752, 1586, 1438, 1368, 1266, 1161, 1028 cm^{−1}; ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3): \delta = 7.55 \text{ (d, } J = 8.0 \text{ Hz}, 1H)$, 7.45 (d, $J = 8.0 \text{ Hz}$, 1H), 7.31−7.21 (m, 2H), 6.75 (s, 1H), 5.65 (d, J = 7.8 Hz, 1H), 5.61 $(d, J = 7.8 \text{ Hz}, 1\text{H})$, 3.78 (s, 3H), 1.45 (s, 9H) ppm; ¹³C NMR (125) MHz, CDCl₃): $\delta = 169.4, 155.0, 154.1, 151.8, 128.0, 124.9, 123.2,$ 121.5, 111.6, 105.5, 80.8, 53.3, 52.2, 28.4 ppm. HRMS (ESI): m/z calcd for $C_{16}H_{19}O_5NNa$ $[M + Na]^+$: 328.1155. Found: 328.1151.

2-N-tert-Butyl 1-Methyl 3,4-Dihydroisoquinoline-1,2(1H)-dicarboxylate (2o). Colorless oil; mp 74−76 °C; IR (neat): 3056, 2979, 1745, 1698, 1393, 1265, 1166, 1098, 1001, 934 cm⁻¹; ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3): \delta = 7.49 - 7.46 \text{ (m, 1H)}, 7.23 - 7.22 \text{ (m, 2H)},$ 7.17−7.15 (m, 1H), 5.60 (5.43 for rotamer) (s, 1H), 3.80−3.76 (m, 2H), 3.71 (s, 3H), 2.99−2.92 (m, 1H), 2.89−2.80 (m, 1H), 1.50 (1.47) (s, 9H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ = 172.5 (172.2), 154.7 (154.6), 135.7 (135.4), 132.5 (132.0), 128.6 (128.3), 128.2 (127.8), 127.72 (127.69), 126.5, 80.7 (80.5), 58.7 (57.6), 52.5 (52.3), 40.8 (39.7), 28.4 (28.3), 21.2 ppm. HRMS (ESI): m/z calcd for $C_{16}H_{21}O_4NNa [M + Na]^+$: 314.1363. Found: 314.1358.

N-tert-Butyl Methyl Isoindoline-1,2-dicarboxylate (2p). Colorless amorphous solid; IR (neat): 3055, 2929, 1755, 1703, 1398,

1266, 1201, 1122, 1017, 899 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 7.21−7.10 (m, 1H), 6.90−6.86 (m, 2H), 6.71 (6.62) (d, J = 6.5 Hz, 1H), 5.58 (5.33 for rotamer) (d, $J = 2.9$ Hz, 1H), 4.79 (4.63) (dd, $J =$ 2.9, 14.3 Hz, 1H), 4.56 (4.34) (d, J = 14.3 Hz, 1H), 3.22 (s, 3H), 1.45 (1.43) (s, 9H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ = 171.2 (170.8), 154.2 (153.7), 137.8 (137.3), 135.3 (135.1), 128.7 (128.6), 127.7 (127.6), 123.1 (123.0), 122.84 (122.82), 80.49 (80.45), 65.9−65.0, 52.5 (52.3), 52.2 (52.0), 28.4 (28.3) ppm. HRMS (ESI): m/z calcd for $C_{15}H_{19}O_4NNa [M + Na]$ ⁺: 300.1206. Found: 300.1206.

Methyl 2-(1,1-Dimethylethylsulfonamido)-2-phenyl-2-methylacetate (2q). White solid; mp 102−103 °C; IR (neat): 3274, 2953, 1742, 1447, 1309, 1258, 1125, 1077, 1029, 993 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 7.45–7.43 (m, 2H), 7.39–7.36 (m, 2H), 7.33– 7.32 (m, 1H), 5.03 (s, 1H), 3.78 (s, 3H), 2.03 (s, 3H), 1.40 (s, 9H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ = 173.7, 141.1, 128.7, 128.4, 125.6, 65.2, 60.2, 53.2, 42.3, 24.2 ppm; HRMS (ESI): m/z calcd for $C_{14}H_{21}O_4$ NSNa $[M + Na]^+$: 322.1084. Found: 322.1080.

General Procedure for Carboxylations of α -Acetoxy Stannanes. Dry CsF (31.4 mg, 0.21 mol, 3 equiv), which was preheated for 10 min by a heat gun under vacuum before use (<5 mmHg at ca. 400 °C), was quickly mixed with α -acetoxy stannane 6aa (30.1 mg, 0.069 mmol). After addition of dry DMF (1.5 mL), the mixture was filled with CO_2 gas (0.1 MPa = 1 atm: balloon), which was heated at 60 °C for 3 h. After the mixture cooled to 0 °C, water and Et_2O were added, and the pH of the mixture was adjusted to 2 by 1 M HCl. The organic layer was extracted with $Et₂O$, washed with brine, and dried over $Na₂SO₄$. The solvent was removed under reduced pressure, and the residue was diluted with MeOH (ca. 2 mL) followed by treatment with TMSCHN₂ (2 M in Et₂O). After 1 h, AcOH was added until N_2 bubbling ceased, and the mixture was directly concentrated under high vacuum to afford the crude product. The yield was determined at this stage using 1,1,2,2-tetrachloroethane $(\delta = 5.9$ ppm in CDCl₃, 2H) as an internal standard (93%). The crude product was then purified by 10% K₂CO₃–SiO₂ column chromatography¹⁷ (hexane–AcOEt, 15:1) to remove organotin residues, followed by preparative PTLC (hexane–Et₂O, 6:1) to afford methyl aceto[xy\(](#page-9-0)phenyl)acetate (7aa) (12.0 mg, 0.058 mmol) in 84% yield as a colorless oil.

Methyl Acetoxy(4-trifluoromethylphenyl)acetate (7b). Colorless oil; IR (neat): 3057, 2957, 1748, 1623, 1438, 1420, 1374, 1327, 1266, 1232 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 7.66 (d, J = 8.3 Hz, 2H), 7.61 (d, J = 8.3 Hz, 2H), 5.99 (s, 1H), 3.74 (s, 3H), 2.22 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ = 170.0, 168.6, 137.6, 131.4 (d, J_{CF} = 32.6 Hz), 127.9, 125.8 (d, J_{CF} = 3.6 Hz), 123.8 (d, J_{CF} = 270.6 Hz), 73.7, 52.9, 20.7 ppm. HRMS (EI): m/z calcd for $C_{10}H_8F_3O_2$ [M – OAc⁺]: 217.0476 Found: 217.0470.

Methyl Acetoxy(4-chlorophenyl)acetate (7c).²² Colorless oil; IR (neat): 2955, 2926, 2852, 1747, 1652, 1598, 1493, 1373, 1269, 1176 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.42 - 7.36$ (m, 4H), 5.90 (s, 1H), 3.73 (s, 3H), 2.20 (s, 3H) ppm; 13C NMR (125 MHz, CDCl₃): δ = 170.2, 169.0, 135.3, 132.2, 129.0, 129.0, 73.7, 52.8, 20.7 ppm. LRMS (EI): m/z calcd for $C_{11}H_{11}ClO_4$ [M⁺]: 242. Found: 242.

Methyl Acetoxy(4-fluorophenyl)acetate (7d). Colorless oil; IR (neat): 2957, 2925, 2851, 1749, 1607, 1512, 1438, 1373, 1349, 1228 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 7.45 (dd, J = 5.2, 8.7 Hz, 2H), 7.08 (t, J = 8.7 Hz, 2H), 5.91 (s, 1H), 3.73 (s, 3H), 2.20 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ = 170.2, 169.17, 163.17 (d, J_{CF} $= 246.1$ Hz), 129.7 (d, $J_{CF} = 3.9$ Hz), 129.5 (d, $J_{CF} = 8.8$ Hz), 115.8 (d, J_{CF} = 21.4 Hz), 73.7, 52.7, 20.7 ppm. HRMS (EI): m/z calcd for $C_{11}H_{11}FO_4$ [M⁺]: 226.0641. Found: 226.0642.

Methyl Acetoxy(phenyl)acetate (7aa).²³ Colorless oil; IR (neat): 3035, 2955, 1749, 1496, 1456, 1437, 1373, 1277, 1234, 1083 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 7.48–7.46 (m, 2H), 7.41– 7.39 (m, 3H), 5.93 (s, 1H), 3.73 (s, 3H), 2.20 (s, 3H) ppm; 13C NMR $(125 \text{ MHz}, \text{CDCl}_3): \delta = 170.3, 160.3, 133.7, 129.2, 128.8, 127.6, 74.4,$ 52.6, 20.7 ppm. LRMS (EI): m/z calcd for $C_{11}H_{12}O_4$ [M⁺]: 208. Found: 208.

Methyl Acetoxy(2-tolyl)acetate (7e). Colorless oil; IR (neat): 3056, 2955, 1747, 1496, 1437, 1373, 1266, 1237, 1173, 1110 cm^{−1}; ¹H NMR (500 MHz, CDCl₃): δ = 7.40 (d, J = 8.0 Hz, 1H), 7.27–7.21

(m, 3H), 6.22 (s, 1H), 3.73 (s, 3H), 2.45 (s, 3H), 2.19 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ = 170.4, 169.6, 136.8, 132.4, 130.8, 129.2, 128.0, 126.4, 71.5, 52.6, 20.7, 19.3 ppm. HRMS (EI): m/z calcd for $C_{12}H_{14}O_4$ [M – AcOH⁺]: 162.0681. Found: 162.0680.

Methyl Acetoxy(4-tolyl)acetate $(7f).^{23}$ Colorless oil; IR (neat): 3055, 2955, 1747, 1517, 1438, 1373, 1266, 1236, 1180, 1056 cm^{−1}; ¹H NMR (500 MHz, CDCl₃): δ = 7.35 (d, J [= 8](#page-9-0).0 Hz, 2H), 7.20 (d, J = 8.0 Hz, 2H), 5.90 (s, 1H), 3.72 (s, 3H), 2.36 (s, 3H), 2.19 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ = 170.4, 169.5, 139.3, 130.8, 129.5, 127.6, 74.3, 52.6, 21.2, 20.7 ppm. LRMS (EI): m/z calcd for $C_{12}H_{14}O_4$ [M⁺]: 222. Found: 222.

Methyl Acetoxy(2-methoxyphenyl)acetate (7q).²⁴ Colorless oil; IR (neat): 2956, 2844, 1747, 1604, 1497, 1465, 1372, 1351, 1256, 1231 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 7.39–[7.35](#page-9-0) (m, 2H), 7.00−6.92 (m, 2H), 6.44 (s, 1H), 3.86 (s, 3H), 3.73 (s, 3H), 2.17 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ = 170.4, 169.8, 157.2, 130.8, 129.4, 122.6, 120.8, 111.2, 68.7, 55.8, 52.5, 20.8 ppm. LRMS (EI): m/z calcd for $C_{12}H_{14}O_5$ [M⁺]: 238. Found: 238.

Methyl Acetoxy(1-naphthyl)acetate (7h).²⁵ Colorless oil; IR (neat): 3055, 2986, 1748, 1513, 1437, 1372, 1340, 1265, 1229, 1055 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ [=](#page-9-0) 8.18 (d, J = 8.5 Hz, 1H), 7.90 $(d, J = 8.5 \text{ Hz}, 2\text{H}), 7.63-7.47 \text{ (m, 4H)}, 6.68 \text{ (s, 1H)}, 3.71 \text{ (s, 3H)},$ 2.21 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ = 170.4, 169.7, 133.9, 131.0, 130.1, 129.9, 128.8, 127.5, 127.0, 126.1, 125.2, 123.7, 72.4, 52.7, 20.8 ppm. LRMS (EI): m/z calcd for $C_{12}H_{14}O_5$ [M⁺]: 258. Found: 258.

Methyl Acetoxy(2-naphthyl)acetate (7i).²⁶ Colorless oil; IR (neat): 3055, 2986, 1747, 1437, 1372, 1341, 1265, 1231, 1126, 1058 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.95 ([s, 1](#page-9-0)H), 7.89–7.84 (m, 3H), 7.58−7.51 (m, 3H), 6.10 (s, 1H), 3.73 (s, 3H), 2.24 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ = 170.4, 169.3, 133.5, 133.0, 131.0, 128.7, 128.2, 127.7, 127.4, 126.8, 126.6, 124.6, 74.6, 52.7, 20.8 ppm. LRMS (EI): m/z calcd for $C_{12}H_{14}O_5$ [M⁺]: 258. Found: 258.

Methyl Acetoxy(2-furyl)acetate (7j). Colorless oil; IR (neat): 3055, 2987, 1758, 1438, 1421, 1372, 1265, 1217, 1152, 1050 cm^{−1}; ¹H NMR (500 MHz, CDCl₃): δ = 7.45 (d, J = 1.6 Hz, 1H), 6.49 (d, J = 3.2 Hz, 1H), 6.41 (dd, J = 1.6, 3.2 Hz, 1H), 6.09 (s, 1H), 3.79 (s, 3H), 2.18 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ = 170.1, 167.2, 146.6, 143.9, 111.1, 110.8, 67.5, 53.0, 20.6 ppm. HRMS (EI): m/z calcd for $C_9H_{10}O_5$ [M⁺]: 198.0528. Found: 198.0528.

Methyl Acetoxy(2-thienyl)acetate (7k). Colorless oil; IR (neat): 3056, 2956, 1751, 1438, 1373, 1339, 1266, 1230, 1127, 1044 cm^{−1}; ¹H NMR (400 MHz, CDCl₃): δ = 7.37 (d, J = 5.1 Hz, 1H), 7.18 (d, J = 3.5 Hz, 1H), 7.02 (dd, J = 3.5, 5.1 Hz, 1H), 6.20 (s, 1H), 3.78 (s, 3H), 2.20 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ = 170.1, 168.5, 135.2, 127.9, 127.2, 127.0, 70.0, 52.9, 20.6 ppm. HRMS (EI): m/z calcd for $C_9H_{10}O_4S$ [M⁺]: 214.0300. Found: 214.0300.

(E)-Methyl 2-Acetoxy-3-methyl-4-phenylbut-3-enoate (7l). Colorless oil; IR (neat): 3057, 2955, 1744, 1541, 1492, 1372, 1339, 1266, 1235, 1175 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 7.37–7.34 (m, 2H), 7.31−7.25 (m, 3H), 6.69 (s, 1H), 5.52 (s, 1H), 3.79 (s, 3H), 2.20 (s, 3H), 1.94 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ = 170.3, 169.2, 136.3, 131.9, 130.6, 129.0, 128.2, 127.3, 78.1, 52.6, 20.8, 14.3 ppm. HRMS (EI): m/z calcd for $C_{14}H_{16}O_4$ [M⁺]: 248.1049. Found: 248.1048.

Methyl 3,4-Dihydro-1H-isochromene-1-carboxylate (7m).²⁷ Colorless oil; IR (neat): 3055, 2954, 1747, 1492, 1454, 1436, 1376, 1344, 1266, 1216 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ [=](#page-9-0) 7.39 (d, J = 6.9 Hz, 1H), 7.25−7.19 (m, 2H), 7.14 (d, J = 7.4 Hz, 1H), 5.38 (s, 1H), 4.34−4.29 (m, 1H), 4.04−3.99 (m, 1H), 3.79 (s, 3H), 2.91−2.87 (m, 2H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ = 171.6, 133.7, 131.0, 129.1, 127.5, 126.3, 126.1, 74.8, 62.9, 52.4, 28.0 ppm. LRMS (EI): m/z calcd for $C_{11}H_{12}O_3$ [M⁺]: 192. Found: 192.

Methyl 2-Acetoxy-2-phenylpropanoate (7n). Colorless oil; IR (neat): 2952, 2851, 1747, 1449, 1373, 1266, 1225, 1125, 1073, 983 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 7.51 (dd, J = 7.2, 1.4 Hz, 2H), 7.40−7.32 (m, 3H), 3.70 (s, 3H), 2.21 (s, 3H), 1.95 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ = 171.4, 169.9, 139.7, 128.5, 128.2, 124.7, 81.6, 52.7, 24.0, 21.4 ppm. HRMS (EI): m/z calcd for $C_{12}H_{14}O_4$ [M⁺]: 222.0892. Found: 222.0890.

One-Pot Synthesis of Acetyl Mandelic Acid. Dry CsF (91.6 mg, 0.6 mmol, 3 equiv) was preheated for 10 min by a heat gun under vacuum before use (<5 mmHg at ca. 400 °C), to which dry $CH₃CN$ (1.5 mL), benzaldehyde ($d = 1.045$ g/mL, 20 μ L, 0.2 mmol), Ac₂O (d = 1.08 g/mL, 57 μ L, 0.6 mmol, 3 equiv), and TMS-SnBu₃ (d = 1.04 g/ mL, 134 μ L, 0.4 mmol, 2 equiv) were added in this order, and then the mixture was heated at 60 °C for 3 h. After cooling to 0 °C, the solvent was evaporated and dried under reduced pressure (<5 mmHg) for 1 h. After the addition of preheated CsF (60.8 mg, 0.4 mmol, 2 equiv), the mixture was filled with CO_2 gas (0.1 MPa = 1 atm: balloon), followed by addition of dry DMF (1.5 mL), and then heated at 100 °C for 1 h. After the mixture cooled to 0 $^{\circ}$ C, water and Et₂O were added and the pH of the mixture was adjusted to 2 by 1 M HCl. The organic layer was extracted with Et₂O, washed with brine, and dried over $Na₂SO₄$. The solvent was removed under reduced pressure, and the residue was diluted with Et₂O (ca. 2 mL). As t-BuNH₂ ($d = 0.696$ g/mL, 21 μ L, 0.2 mmol, 1 equiv) was added slowly, white precipitates appeared. After 1 h, $Et₂O$ was removed under reduced pressure followed by the addition of hexane (ca. 2 mL). The solids were collected by filtration and washed with hexane, which were dissolved in water with the pH adjusted to 2 by 1 M HCl. The product was extracted with CH_2Cl_2 , washed with brine, and dried over $Na₂SO₄$. The solvent was removed under reduced pressure to give 2-acetoxy-2-phenelacetic acid (7aa′) (20.2 mg, 0.104 mmol) as a colorless oil in 52% yield.

2-Acetoxy-2-phenylacetic acid (7aa′). Colorless oil; IR (neat): 3036, 1740, 1497, 1456, 1374, 1233, 1183, 1082, 1053, 1004 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 7.49–7.47 (m, 2H), 7.41–7.34 (m, 2H), 5.93 (s, 1H), 2.19 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ = 174.1, 170.4, 133.1, 129.5, 128.9, 127.6, 74.1, 20.6 ppm. LRMS (EI): m/z calcd for $\rm C_{10}H_{10}O_4$ [M⁺]: 194. Found: 194 ((R) and (S) products are commercially available from a chemical supplier).

General Procedure of Chirality Transfer Reactions. Dry CsF (22.8 mg, 0.15 mol, 3 equiv), which was preheated for 10 min by a heat gun under vacuum before use $(<5$ mmHg at ca. 400 °C), was quickly mixed with (S)-N-(tert-butylsulfonyl)-α-(tributylstannyl) benzylamine (8a) (26.2 mg, 0.051 mmol). After addition of dry triglyme (1.5 mL), the mixture was put inside an autoclave and sealed tightly. $CO₂$ gas was introduced into the autoclave (1 MPa) , which was heated at 100 °C for 3 h. After the mixture cooled to 0 °C, water and $Et₂O$ were added, and the pH of the mixture was adjusted to 2 by 1 M HCl. The organic layer was extracted with $Et₂O$, washed with brine, and dried over $Na₂SO₄$. The solvent was removed under reduced pressure, and the residue was diluted with MeOH (ca. 2 mL) followed by treatment with TMSCHN₂ (2 M in Et₂O). After 1 h, AcOH was added until N_2 bubbling ceased, and the mixture was directly concentrated under high vacuum to afford the crude product, to which $Et₂O$ was added and the mixture was washed with $H₂O$ to remove most of triglyme. Yields of 9a and protiodestannylation product were determined at this stage using 1,1,2,2-tetrachloroethane (δ = 5.9 ppm in $CDCl₃$, $2H$) as an internal standard (9a: 69%, protiodestannylation product: 7%). The crude product was then purified by 10% K₂CO₃− \overline{SiO}_2 column chromatography¹⁷ (AcOEt only) to remove organotin residues, followed by preparative PTLC (hexane−AcOEt, 7:1) for separation from 10a, affordin[g](#page-9-0) methyl (S) -2- $(1,1$ -dimethylethylsulfonamido)-2-phenylacetate (9a) (6.1 mg, 0.021 mmol) in 42% yield as white solids with 85% ee.

Methyl (S)-2-(1,1-Dimethylethylsulfonamido)-2-phenylacetate (9a).²⁸ White solid; mp 151-153 °C; IR (neat): 3287, 3056, 2981, 1745, 1479, 1366, 1266, 1175, 1074, 1021 cm^{−1}; ¹H NMR (500 MHz, CDCl₃): δ = 7.38–7.34 (m, 5H), 5.20 (d, J = 8.3 Hz, 1H), 5.15 $(d, J = 8.3$ Hz, 1H), 3.75 (s, 3H), 1.30 (s, 9H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ = 171.6, 136.7, 129.1, 128.7, 127.1, 60.1, 60.0, 53.2, 24.0 ppm. LRMS (EI): m/z calcd for $C_{13}H_{19}NO_4S$ [M]⁺: 285. Found: 285. $[\alpha]^{24}$ _D +94.8 ($c = 0.55$, CHCl₃, 85% ee). HPLC (Chiralpak AD-H, 2-propanol/hexane 3/97, flow 1.0 mL/min, detection at 220 nm): t_R 48.1 min (major) and 27.9 min (minor). The absolute configuration was determined to be (S) by comparison of specific rotation with literature data. {Lit. (>99% ee) $[\alpha]^{25}$ _D = -102.6 (*c* = 0.50, CHCl₃) for R isomer.28}

Methyl 2-(1,1-Dimethylethylsulfonamido)-2-(4 fluorophenyl)acetate (9b). Colorless amorphous solid; IR (neat): 3288, 2984, 2957, 2924, 1752, 1606, 1512, 1452, 1305, 1132 cm^{−1}; ¹H NMR (500 MHz, CDCl₃): δ = 7.35–7.32 (m, 2 H), 7.09–7.05 (m, 2 H), 5.20 (d, $J = 8.0$ Hz, 1 H), 5.14 (d, $J = 8.0$ Hz, 1 H), 3.76 (s, 3 H), 1.30 (s, 9 H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ = 171.4, 162.8 $(J_{CF} = 245.6 \text{ Hz})$, 132.7 $(J_{CF} = 3.5 \text{ Hz})$, 128.9 $(J_{CF} = 8.4 \text{ Hz})$, 116.6 $(J_{CF} = 21.5 \text{ Hz})$, 60.1, 59.3, 53.3, 24.0 ppm. HRMS (EI): m/z calcd for $C_{11}H_{15}FNO_2S$ [M – CO₂Me]⁺: 244.0802. Found: 244.0801. [α]²⁴_D +71.8 $(c = 0.54, CHCl₃, 82% ee)$. HPLC (Chiralpak AD-H, 2propanol/hexane 3/97, flow 1.0 mL/min, detection at 230 nm.): t_R 39.3 min (major) and 23.9 min (minor).

Methyl 2-(1,1-Dimethylethylsulfonamido)-2-(4 chlorophenyl)acetate (9c). White solid; mp 103−105 °C; IR (neat): 3284, 2985, 1740, 1492, 1440, 1313, 1220, 1132, 1016, 977 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 7.37–7.34 (m, 2H), 7.31– 7.29 (m, 2H), 5.20−5.16 (m, 2H), 3.75 (s, 3H), 1.30 (s, 9H) ppm; 13C NMR (125 MHz, CDCl₃): δ = 171.2, 135.3, 134.7, 129.3, 128.5, 60.2, 59.3, 53.3, 24.0 ppm. HRMS (EI): m/z calcd for C₁₁H₁₅NO₂ClS [M – CO_2Me ¹ : 260.0512. Found: 260.0505. $[\alpha]^{24}$ _D +80.2 (c = 0.40, CHCl₃, 72% ee). HPLC (Chiralpak AD-H, 2-propanol/hexane 5/95, flow 1.0 mL/min, detection at 230 nm.): t_R 23.0 min (major) and 17.9 min (minor).

Methyl 2-(1,1-Dimethylethylsulfonamido)-2-(4 methylphenyl)acetate (9d). White solid; mp 126−127 °C; IR (neat): 3282, 2981, 1738, 1440, 1336, 1223, 1172, 1105, 1026, 977 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 7.23 (d, J = 8.0 Hz, 2H), 7.18 $(d, J = 8.0 \text{ Hz}, 2H), 5.16 (d, J = 8.6 \text{ Hz}, 1H), 5.09 (d, J = 8.6 \text{ Hz}, 1H),$ 3.74 (s, 3H), 2.35 (s, 3H), 1.30 (s, 9H) ppm. 13C NMR (125 MHz, CDCl₃): δ = 171.8, 138.6, 133.7, 129.7, 127.0, 60.1, 59.8, 53.1, 24.0, 21.2 ppm. HRMS (EI): m/z calcd for C₁₂H₁₈O₂NS [M – CO₂Me]⁺: 240.1058. Found: 240.1054. $[\alpha]^{24}$ _D +57.3 ($c = 0.33$, CHCl₃, 90% ee). HPLC (Chiralcel OD-H, 2-propanol/hexane 1/99, flow 1.0 mL/min, detection at 220 nm.): t_R 22.9 min (major) and 26.7 min (minor).

Hammett Analysis. Dry CsF (22.8 mg, 0.15 mol, 3 equiv), which was preheated for 10 min by a heat gun under vacuum before use (<5 mmHg at ca. 400 °C), was quickly added to a mixture of N-Boc-αamido stannane 1a (26.2 mg, 0.025 mmol) and substituted 1 (0.025 mmol). After addition of dry DMF (1.5 mL), the solution was put inside an autoclave and sealed tightly. $CO₂$ gas was introduced into the autoclave (1 MPa), which was heated at 100 °C for 15 min (<40% conversion). After cooling to 0 $^{\circ}$ C, water and Et₂O were added, and the pH of the mixture was adjusted to 2 by 1 M HCl. The organic layer was extracted with $Et₂O$, washed with brine, and dried over Na₂SO₄. The solvent was removed under reduced pressure to afford the crude mixture. The amounts of remaining 1a and substituted 1 were determined at this stage using 1,3,5-trimethoxybenzene (δ = 6.1 ppm in CDCl₃, 3H) in ¹H NMR as an internal standard. The peak of methine proton of CHSnBu₃ was used for calculation. If clean separation could not be observed in ¹H NMR, the molar ratio of 1a and 1 was determined by 119 Sn NMR in d-benzene. The ratio of total conversion $(2 + 3/2a + 3a)$ was determined as [0.025 mmol (initial) amounts of 1) – (remaining amounts of 1)]/[0.025 mmol (initial amounts of $1a$) – (remaining amounts of $1a$)]. Plotting of log [0.025] mmol (initial amounts of 1) – (remaining amounts of 1)]/[0.025 mmol (initial amounts of 1a) – (remaining amounts of 1a)] versus σ values indeed revealed a linear relationship with $\rho = +1.83$.

■ ASSOCIATED CONTENT

S Supporting Information

Spectroscopic data (${}^{1}H$ and ${}^{13}C$ NMR) of new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

■ [AUTHOR INF](http://pubs.acs.org)ORMATION

Corresponding Author

*E-mail: tmita@pharm.hokudai.ac.jp; biyo@pharm.hokudai.ac. jp

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

This work was financially supported by Grants-in-Aid for Young Scientists (B) (No. 22750081) and for Scientific Research (B) (No. 23390001) from the Japan Society for the Promotion of Science (JSPS), Nissan Chemical Industries Ltd., Tosoh Corporation, and the Uehara Memorial Foundation. Dr. Stephan J. Zuend is greatly acknowledged for critical reading of the draft and for helpful discussion.

■ REFERENCES

(1) For a special review on glycopeptide antibiotics, see: Nicolaou, K. C.; Boddy, C. N. C.; Bräse, S.; Winssinger, N. Angew. Chem., Int. Ed. 1999, 38, 2096 and references cited therein.

(2) For a book and a review: (a) Coppola, G. M.; Schuster, H. F. α -Hydroxy Acids in Enantioselective Syntheses; Wiley-VCH: Weinheim, 1997. (b) Gröger, H. Adv. Synth. Catal. 2001, 343, 547.

(3) For representative reviews, see: (a) Williams, R. M.; Hendrix, J. A. Chem. Rev. 1992, 92, 889. (b) Duthaler, R. O. Tetrahedron 1994, 50, 1539. (c) Seebach, D.; Sting, A. R.; Hoffmann, M. Angew. Chem., Int. Ed. 1996, 35, 2708. (d) Cativiela, C.; Díaz-de-Villegas, M. D. Tetrahedron: Asymmetry 1998, 9, 3517. (e) Maruoka, K.; Ooi, T. Chem. Rev. 2003, 103, 3013.

(4) For recent reviews, see: (a) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365. (b) Mori, M. Eur. J. Org. Chem. 2007, 4981. (c) Correa, A.; Martín, R. Angew. Chem., Int. Ed. 2009, 48, 6201. (d) Riduan, S. N.; Zhang, Y. Dalton Trans. 2010, 39, 3347. (e) Boogaerts, I. I. F.; Nolan, S. P. Chem. Commun. 2011, 47, 3021. (f) Ackermann, L. Angew. Chem., Int. Ed. 2011, 50, 3842.

(5) (a) Katsoulos, G.; Schlosser, M. Tetrahedron Lett. 1993, 34, 6263. (b) Park, Y. S.; Beak, P. J. Org. Chem. 1997, 62, 1574. (c) Faibish, N. C.; Park, Y. S.; Lee, S.; Beak, P. J. Am. Chem. Soc. 1997, 119, 11561. (d) Tomooka, K.; Wang, L.-F.; Okazaki, F.; Nakai, T. Tetrahedron Lett. 2000, 41, 6121. (e) Barberis, C.; Voyer, N.; Roby, J.; Chenard, S.; ́ Tremblay, M.; Labrie, P. Tetrahedron 2001, 57, 2965. (f) Stead, D.; Carbone, G.; O'Brien, P.; Campos, K. R.; Coldham, I.; Sanderson, A. J. Am. Chem. Soc. 2010, 132, 7260.

(6) For selected examples of tin–lithium exchange of α -amino and α alkoxy stannanes followed by their functionalizations other than carboxylations, see: (a) Pearson, W. H.; Lindbeck, A. C. J. Org. Chem. 1989, 54, 5651. (b) Pearson, W. H.; Lindbeck, A. C. J. Am. Chem. Soc. 1991, 113, 8546. (c) Pearson, W. H.; Lindbeck, A. C.; Kampf, J. W. J. Am. Chem. Soc. 1993, 115, 2622. (d) Wu, S.; Lee, S.; Beak, P. J. Am. Chem. Soc. 1996, 118, 715. (e) Weisenburger, G. A.; Beak, P. J. Am. Chem. Soc. 1996, 118, 12218. (f) Iula, D. M.; Gawley, R. E. J. Org. Chem. 2000, 65, 6196. (g) Ncube, A.; Park, S. B.; Chong, J. M. J. Org. Chem. 2002, 67, 3625. (h) Fraser, D. S.; Park, S. B.; Chong, J. M. Can. J. Chem. 2004, 82, 87. For α -alkoxy stannanes: (i) Still, W. C. J. Am. Chem. Soc. 1978, 100, 1481. (j) Still, W. C.; Sreekumar, C. J. Am. Chem. Soc. 1980, 102, 1201. (k) Chong, J. M.; Mar, E. K. Tetrahedron Lett. 1990, 31, 1981. (l) Ye, J.; Bhatt, R. K.; Falck, J. R. J. Am. Chem. Soc. 1994, 116, 1. (m) Falck, J. R.; Bhatt, R. K.; Ye, J. J. Am. Chem. Soc. 1995, 117, 5973.

(7) For carboxylations through tin−lithium exchange, see: (a) Chan, P. C. -M.; Chong, M. Tetrahedron Lett. 1990, 31, 1985. (b) Chong, J. M.; Park, S. B. J. Org. Chem. 1992, 57, 2220. (c) Frey, O.; Hoffmann, M. H.; Kessler, H. Angew. Chem., Int. Ed. Engl. 1995, 34, 2026. (d) Hoffmann, M.; Burkhart, F.; Hessler, G.; Kessler, H. Helv. Chim. Acta 1996, 79, 1519. (e) Coeffard, V.; Beaudet, I.; Evain, M.; Grognec, E. L.; Quintard, J. -P. Eur. J. Org. Chem. 2008, 3344.

(8) (a) Merrifield, R. B. J. Am. Chem. Soc. 1963, 85, 2149. (b) Merrifield, R. B. Science 1986, 232, 341. (c) O'Donnell, M. J.; Zhou, C.; Scott, W. L. J. Am. Chem. Soc. 1996, 118, 6070.

(9) The reaction of 1a with $CO₂$ in the presence of 2.5 equiv of *n*-BuLi in THF gave no desired amino acid. 1a was recovered in 91% yield.

(10) Mita, T.; Chen, J.; Sugawara, M.; Sato, Y. Angew. Chem., Int. Ed. 2011, 50, 1393.

(11) (a) Mita, T.; Higuchi, Y.; Sato, Y. Org. Lett. 2011, 13, 2354. (b) Mita, T.; Higuchi, Y.; Sato, Y. Synthesis 2012, 44, 194.

(12) (a) Kells, K. W.; Chong, J. M. Org. Lett. 2003, 5, 4215. (b) Kells, K. W.; Chong, J. M. J. Am. Chem. Soc. 2004, 126, 15666. (c) He, A.; Falck, J. R. Angew. Chem., Int. Ed. 2008, 47, 6586.

(13) Hammett, L. P. J. Am. Chem. Soc. 1937, 59, 96.

(14) Peaks of 2a and substituted 2 in the crude mixture were sometimes overlapped in ¹H NMR as well as GC analyses partly due to the existence of rotamers of Boc-amino acid derivatives. Therefore, total conversion $(2a + 3a$ and $2 + 3)$ was selected to determine the ρ value, each of which was estimated based on the amount of unreacted 1a and 1 by NMR calculation: See Experimental Section for details.

(15) The carboxylation of 1a proceeded with an identical yield (90%) in the presence of 1 equiv of a radical scavenger BHT (3,5-di-tertbutyl-4-hydroxytoluene), indicatin[g the exclusion of](#page-4-0) the radical mechanism.

(16) Ruano, J. L. G.; Alemán, J.; Cid, M. B.; Parra, A. Org. Lett. 2005, 7, 179.

(17) Harrowven, D. C.; Curran, D. P.; Kostiuk, S. L.; Wallis-Guy, I. L.; Whiting, S.; Stenning, K. J.; Tang, B.; Packard, E.; Nanson, L. Chem. Commun. 2010, 46, 6335.

(18) (a) Bhatt, R. K.; Ye, J.; Falck, J. R. Tetrahedron Lett. 1994, 35,

4081. (b) Busch-Petersen, J.; Bo, Y.; Corey, E. J. Tetrahedron Lett. 1999, 40, 2065. (c) Blanc, R.; Commeiras, L.; Parrain, J. -L. Adv. Synth. Catal. 2010, 352, 661.

(19) When (S,R)-N-tert-butylsulfinyl-α-amido stannane (ref 12b: >99de, >99% ee) was used, imine was only produced via retrostannylation.

(20) Fort, Y.; Gros, P.; Rodriguez, A. L. Tetrahedron Lett. 2002, 43, 4045.

(21) Dussault, P. H.; Eary, C. T.; Lee, R. J.; Zope, U. R. J. Chem. Soc., Perkin Trans. 1 1999, 15, 2189.

(22) Yao, W.; Liao, M.; Zhang, X.; Xu, H.; Wang, J. Eur. J. Org. Chem. 2003, 9, 1784.

(23) Nemoto, H.; Kawamura, T.; Kitasaki, K.; Yatsuzuka, K.; Kamiya, M.; Yoshioka, Y. Synthesis 2009, 1694.

(24) Basavaiah, D.; Krishna, P. R. Tetrahedron 1995, 51, 2403.

(25) Momiyama, N.; Yamamoto, H. J. Am. Chem. Soc. 2005, 127, 1080.

(26) Kimura, M.; Kuboki, A.; Sugai, T. Tetrahedron: Asymmetry 2002, 13, 1059.

(27) Semeyn, C.; Blaauw, R. H.; Hiemstra, H.; Speckamp, W. N. J. Org. Chem. 1997, 62, 3426.

(28) Hodgson, D. M.; Kloesges, J.; Evans, B. Synthesis 2009, 1923.